Term-Level Verification of a Pipelined CISC Microprocessor

نویسنده

  • Randal E. Bryant
چکیده

By abstracting the details of the data representations and operations in a microprocessor, term-level verification can formally prove that a pipelined microprocessor faithfully implements its sequential, instruction-set architecture specification. Previous efforts in this area have focused on reduced instruction set computer (RISC) and very-large instruction word (VLIW) processors. This work reports on the verification of a complex instruction set computer (CISC) processor styled after the Intel IA32 instruction set using the UCLID term-level verifier. Unlike many case studies for term-level verification, this processor was not designed specifically for formal verification. In addition, most of the control logic was given in a simplified hardware description language. We developed a methodology in which the control logic is translated into UCLID format automatically, and the pipelined processor and the sequential reference version were described with as much modularity as possible. The latter feature was made especially difficult by UCLID’s limited support for modularity. A key objective of this case study was to understand the strengths and weaknesses of UCLID for describing hardware designs and for supporting the formal verification process. Although ultimately successful, we identified several ways in which UCLID could be improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifying a Simple Pipelined Microprocessor Using Maude

We consider the verification of a simple pipelined microprocessor in Maude, by implementing an equational theoretical model of systems. Maude is an equationally-based language, with an efficient term rewriting implementation, and effective meta-level tools. Microprocessors and other systems are modelled as iterated maps operating in time over some state-set, and are related by means of data and...

متن کامل

Verification of Pipelined Microprocessors Using Invariants

This paper presents a new approach for the verification of a pipelined microprocessor which is based on the definition of invariants to characterize the reachable states of the pipelined machine. To express many machine-relevant properties, we have modelled the stream of instructions with the system Maude which is based on Rewriting Logic. It is also used to run and debug the pipelined machine ...

متن کامل

Microprocessor Verification using RT-Level Static Analysis Techniques

We present a technique for automatic verification of pipelined microprocessors using model checking. Antecedent conditioned slicing is an efficient abstraction technique for hardware designs at the Register Transfer Level (RTL). Antecedent conditioned slicing prunes the verification state space, using information from the antecedent of a given LTL property. In this work, we model instructions o...

متن کامل

Collection of High-Level Microprocessor Bugs from Formal Verification of Pipelined and Superscalar Designs

The paper presents a collection of 93 different bugs, detected in formal verification of 65 student designs that include: 1) singleissue pipelined DLX processors; 2) extensions with exceptions and branch prediction; and 3) dual-issue superscalar implementations. The processors were described in a high-level HDL, and were formally verified with an automatic tool flow. The bugs are analyzed and c...

متن کامل

Exploiting Positive Equality and Partial Non-Consistency in the Formal Verification of Pipelined Microprocessors1

We study the applicability of the logic of Positive Equality with Uninterpreted Functions (PEUF) [2][3] to the verification of pipelined microprocessors with very large Instruction Set Architectures (ISAs). Abstraction of memory arrays and functional units is employed, while the control logic of the processors is kept intact from the original gate-level designs. PEUF is an extension of the logi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005